Does uneven-aged silviculture better prepare forests to global change than even-aged silviculture?

Philippe Nolet, Christian Messier, Daniel Kneeshaw, Martin Béland

March 9, 2017

INTERNATIONAL WORKSHOP
Forest and Climate Change: adaptation
initiatives and new management practices
2017 March 8 and 9, Nancy (France)

A quick reminder

Introduction

Uneven-aged silviculture (UAS) leads to more resilient forests than even-aged silviculture (EAS) dominant thinking

disturbance regime: the best bet (Thompson et al 2009; Nolet et al 2014)

This diversity favors resilience

Public (Bliss 2000)

Foresters (ProSylva)

Researchers (O'Hara & Ramage 2012; Déchêne & Buddle 2009; Lafond et al 2013)

Objective

To evaluate, through a literature review, whether there is any scientific evidence to support that unevenaged silviculture better maintains/promotes biodiversity and key ecological processes than evenaged silviculture.

Methodology

- Only scientific papers that compared EAS vs UAS on any ecological value;
- English papers only
- Worldwide;
- Scopus, Web of Science, Google Scholar.

Studies geographic distribution

~ 70 studies

Studies syntheses Herpetofauna (partial example)

Properties or process studied	Metrics used	UAS preferable to EAS ?	Time/spatial scale consideration	Biome	Reference
Amphibians oviposition, larval, juvenile and adult stages	Abundance	No for oviposition and larval stages and yes for juvenile and adult stages	4 years after treatment/No	Temperate Evergreen Forests /Temperate Deciduous Forests	Semlitsch et al. (2009)
Red-backed salamander population	Abundance	Yes	6-7 years after treatment/No	Temperate Deciduous Forests	Hocking et al. (2013)
Salamanders populations	Abundance and reproductive efficiency	Yes	13 yrs after treatment/Yes	Temperate Deciduous Forests	Homyack & Haas (2009)
Amphibians and reptiles populations	Abundance	Yes for Ambhibians and species-specific for reptiles	3-4 years after treatment/Yes	Temperate Deciduous Forests	Renken et al. (2004)
Amphibians specialist and generalist populations	Activity	Yes for specialist, species-specific for generalist	6 years after treatment/No	Temperate Deciduous Forests	Popescu et al. (2012),

Overall synthesis

Properties and process	Studies showing UAS preferable to EAS	Number of studies
Tree species diversity	1	7
Herb/shrub diversity and composition	0	11
Structural elements	3	7
Mycorhizae, lichens, bryophytes, fungi and bacteries	3	5
Mammal communities	0	6
Bird communities	0	9
Herp communities	4	7
Invertebrate communities	0	10
Carbon-related processes	4	10
Soil-related properties	3	7
Total	18	79

Main findings

 There is no strong scientific evidence that UAS is preferable to EAS in ecological terms;

Two main caveats:

- a) In most studies EAS was based on natural regeneration;
- b) Time and spatial scales were often not considered;
- Both EAS and UAS present advantages and limits;
- Some ecosystem properties and processes appear fragile to any type of forest management. Full conservation is still needed.

UAS not better than EAS? 3 possible reasons to explain this result

- This is really it: UAS not better than EAS
- The low number of studies comparing EAS vs UAS
- The complexity of comparing EAS and UAS
 - Various sub-systems in both approaches
 - Variations in the management intensity in both approaches
 - The time and spatial scales effects

Time scale comparison problem: an example with windthrow susceptibility

Even-aged stand windthrow loss after partial windthrow

Uneven-aged stand windthrow loss after partial windthrow

Implications for silviculture of adaptation (SoA)

Any silvicultural treatment, new or not, that aims to prepare forests to global change Reason 2:

Reason 1:

UAS not better than

EAS

Opens widely the possibility of using even-aged silviculture in SoA Not enough studies

Requires comparisons of EAS and UAS in SoA Reason 3:
Complexity of comparing EAS to UAS

Requires that SoA comparing EAS-UAS be included in forest management plans

Comparing EAS and UAS in forest management plans

Reaseach and practice must work hand in hand: no more forest management plans without research

- -In an active adaptive management framework
- -Long time re-measurements
- -At both stand and landscape scales

Conclusion

 UAS not obviously better than EAS to maintain diversity and processes;

3 reasons to explain this conclusion;

EAS should be included in silviculture of adaptation.

Merci!

Message aux étudiants: nous recrutons!!!