





# Testing new genetic resources for forest adaptation: from pioneer realisations to the building of a national cooperative project







### Stakes







**Pedonculate** 

2055, A1B Arpège Cheaib et al, 2012

- Bioclimatic situation of France : most major forest species are vulnerable
- Due to the relative poverty of the European flora, former introductions of alien species
- ⇒ The active introduction of new forest resources appears as a key adaptation measure:
  - Assisted migration of provenances of species of autochthonous tree species or short distance species transport
  - New alien species introduction

→ Presentation of two pioneer projects and of the ongoing building of a national collaborative project







## Seeking alternative species for future Lorraine forest





# An action undertaken by local forest managers







#### The Lorraine Region: a productive forest region

870 000 ha = 36 % of forested area (source IFN/IGN)

Public forests: 64 %, Private forests: 36 %

Semi continental climate: MAT: 9 to 10 °C and annual precipitation: 700 to

1000 mm at low elevations

Most important species (volumes): beech and oak at low altitudes; fir and

spruce in montains

3.8 million m<sup>3</sup> harvested/yr and 24 000 jobs in timber industries.

#### Partnership between public and private forests

ONF and CNPF with financial support from DRAAF Inclusion of results from previous national and regional projects Frequent communications with national levels (consistency)

### A three-level project

- •Inventory of introduced species potentially interesting in the context of climate change.
- Experimental designs to monitor these stands
- •Species/provenance tests, plantations with non-native or unconventional species, potentially resilient to climate change.



### **Vulnerability analysis**







#### **Climate change in the Lorraine region**

+ 1.25 to + 1.85°C in 2050, + 2 to 4°C by the end of the century, depending on models (Aladin, LMDZ) and scenarios (B1, A1B, A2)
Uncertainty around future amount of precipitation => uncertainty around species suitability

#### **Species-level approach**

Predictions from Species Distribution Models (niche or process-based models)

- -> Very high risk / high uncertainty for beech
- -> High risk/high uncertainty for oaks
- -> Very high risk / moderate uncertainty for Scots pine
- -> Very high risk for spruce and high risk for fir in mountainous areas

#### Most sensitive environments where alternative species are sought

In case of drying scenario:

- -> Beech forests on limestone plateau
- -> Hydromorph mixed oak forests in plains and clayey plateau (Species importance taken into account)



### Choice of study-species







#### Using « nomades » tools (New methods for forest species acclimation)

IKS: climate envelope model defined by 3 limiting factors: total heat sum, winter cold, annual water balance

#### Nomades grid for species choice:

- -Climate filter: analysis of species suitability under future climates
- -Soil filter: resistance to clogging and active limestone
- -Pests filter: discard vulnerable species
- -Quality filter: integrating wood quality criteria

### Additional literature review, analysis of previous plantation tests and expert knowledge

### Species chosen for calcareous environments

- -Fagus sylvatica 1-0G(FSY 201 NE): control
- -Quercus pubescens 1-0G (Normandie)
- -Abies bornmuelleriana 3-0g (VG Bostan)
- -Calocedrus decurrens 1-0G (Northern California)

### Species considered for clayey environments

- -Quercus robur: control
- -Pinus pinaster (! climate)
- -Alnus rubra or cordata (uncertainty on wood quality and growth)
- -Tillia cordata or platyphyllos (already present)





### Experimental design (calcareous environment)







### **Plantation in FD de Haye**

- -Calcareous environment (high future risk, defined study-species,..)
- -Typical calcareous station, relative spatial homogeneity
- -Altitude: 350 m. Precipitation: 850 mm/yr.

#### Design

Plantation test without repetition (to be integrated in the national test network)

- -4 monitoring plots 35 x 35 m (12,25 ares) with 10 m-isolation strips and 3m x 3m plantation spacing
- -Choice of long-term monitoring
- -Measurements: dendrometry, wood quality, diseases and pests

#### **Implementation**

- Plants grown in the Guéméné Penfao experimental nursery
- Plants in buckets
- In-situ grinding of vegetation from previous stand and fencing (deer browsing)
- - Soil preparation with mini-excavator and plantation in winter 2016/2017
- Cost: 4 500 € (fence) + 3 600 € (plants/plantation) + 2 000 € (3 ha-grinding) = 10 000 €

NB: plantation of Quercus pubescens delayed to fall (plants not available)











GIONO Projet ...men who transplanted trees, ONF (Brigitte Musch)



# A the range boundary, original and threatened resources









- Simulated drift the Beech climatic beech envelop:
  - ~10km/an (Le Bouler 2015)
- Estimated Beech migration capacity: ~30 m/an





# Giono: an action-oriented project





- Selection of threatened stands (4 fir stands, 4 oak stands, 6 beech stands)
- Seeds collection during 2 or 3 years
- Planting stocks production
- Plantation in the core area (in progress, 2 plantation campaigns achieved)
  - Provenances comparison test (marginal and local provenances)
  - For each provenance: 20 maternal progenies X 24 ind.
  - 4 repetitions
  - 1 site/essence, a 2<sup>nd</sup> one projected



# Enrich the genetic diversity in order to increase the adaptive capacity







Assisted migration of resources adapted to a warmer-dryer climate = diversity enrichment



Spontaneous reproduction an hybridization













# Towards a national partnership network



### Towards a national partnership network





- Emerging from experiences and thinking processes of Aforce members
- EXPRESS process (nov 2016-feb 2017) : 2 workshops, 5 working groups:
  - General framework
  - Forest material to be tested
  - Experimental design and monitoring protocols
  - Seeds and planting stocks supply, logistics
  - Data bases
- An ongoing call for innovative projects launched by Ministry of Agriculture (deadline: March 13th!)
- => Ongoing building of a national global project, structured in 3 parts



# Part 1: Building of a long term partnership







- Core-group and monitoring committee (stakeholders),
- Consortium agreement definition → shared data base
- Development of a collaborative platform
- Strategy for knowledge sharing and practices improvement:
  - Targeting professionals and civil society
  - In a collaborative way of thinking



### Part2: existing trials referencing and CNPF evaluation







- Pre-existing **experimental networks** of partners: meta-data collection and sharing
  - Ref. VALORESO project
- Referencing of unconventional introductions of species by foresters:
  - Lorraine survey -> ONF survey in publicowned forest -> extension to private forest
- Assessment of the performances of species introduced in arboretums

#### Cedrus atlantica:

(1) Species trials of FCBA, INRA, CNPF, ONF and distribution according a thermic gradient (Pierangelo et al., 2015) (2)Unconventional introductions referenced in public forest (intermediate results)



### Initiate a consistent network of linked trials







Experimental nursery, Peyrat-le Château

- Identify (methodology) the productive system to be targeted: adaptation stakes = production stakes X vulnerability level
- Trials design, monitoring protocoles and sites selection:
  - Different types of trials:
    - Ex situ trials (young stages, controled conditions)
    - Simple performance forest trials
    - Species and provenances comparison trials
    - Reference stands in normally managed compartments (« Futur islands »)
- Identification of genetic resources to be tested
  - A common list per targeted productive system
- Seed collection or purchase, planting stocks grown
- Sites preparation and plantation





### As a conclusion

- Thanks to these pioneer projects and many others we:
  - Learned about difficulties:
    - Lack of quantitative knowledge about species ecological requirements & limits of existing experimental network
    - Seed and planting stock logistics and search for homogeneous sites!
    - High costs of establishment and long term monitoring
  - tested and combined tools:
    - scenarios, models simulations, monitoring protocols...
  - Built a partnership, and a vision, collected ideas, eg:
    - Targeting vulnerable productive systems
    - Combining of different types of experimental design...etc
- Many remaining questions:
  - Social perceptions for example

